

Pair Correlations in the p-adic Setting

Christian Weiß, HRW MCQMC 2024, Waterloo, Canada

20/08/2024

Real Uniform distribution (1/2)

Definition

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in [0,1]. The sequence is said to be **uniformly distributed** if for all $0 \le a < b \le$ it holds that

$$\lim_{N\to\infty}\frac{\#\{x_1,\dots,x_N\}\cap[a,b)}{N}-(b-a)=0.$$

Definition

The discrepancy of the first $N \in \mathbb{N}$ elements of the sequence $(x_n)_{n \in \mathbb{N}} \subset [0,1]$ is defined as

$$D_N(x_n) = \sup_{[a,b)\subset[0,1]} \left| \frac{\#\{x_1,\ldots,x_N\}\cap[a,b)}{N} - (b-a) \right|.$$

Real Uniform distribution (1/2)

Definition

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in [0,1]. The sequence is said to be **uniformly distributed** if for all $0 \le a < b \le$ it holds that

$$\lim_{N \to \infty} \frac{\#\{x_1, \dots, x_N\} \cap [a, b)}{N} - (b - a) = 0.$$

Definition

The **discrepancy** of the first $N \in \mathbb{N}$ elements of the sequence $(x_n)_{n \in \mathbb{N}} \subset [0,1]$ is defined as

$$D_N(x_n) = \sup_{[a,b)\subset[0,1]} \left| \frac{\#\{x_1,\ldots,x_N\}\cap[a,b)}{N} - (b-a) \right|.$$

Real Uniform distribution (2/2)

Theorem

A sequence $(x_n)_{n\in\mathbb{N}}\subset [0,1]$ is uniformly distributed if and only if $\lim_{N\to\infty}D_N(x_n)=0$..

Theorem (Schmidt) & Definition

The best possible rate of convergence is $D_N(x_n) = O(\log(N)/N)$. A sequence satisfying $D_N(x_n) = O(\log(N)/N)$ is called a **low-discrepancy sequence**.

Real Uniform distribution (2/2)

Theorem

A sequence $(x_n)_{n\in\mathbb{N}}\subset [0,1]$ is uniformly distributed if and only if $\lim_{N\to\infty}D_N(x_n)=0$..

Theorem (Schmidt) & Definition

The best possible rate of convergence is $D_N(x_n) = O(\log(N)/N)$. A sequence satisfying $D_N(x_n) = O(\log(N)/N)$ is called a **low-discrepancy sequence**.

Example

Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Then the **Kronecker sequence** $(\{n\alpha\})_{n \in \mathbb{N}}$ is uniformly distributed. If α has in addition bounded partial quotients a_i in its continued fraction expansion, then the sequence is a low-discrepancy sequence.

Real Uniform distribution (2/2)

Theorem

A sequence $(x_n)_{n\in\mathbb{N}}\subset [0,1]$ is uniformly distributed if and only if $\lim_{N\to\infty}D_N(x_n)=0$..

Theorem (Schmidt) & Definition

The best possible rate of convergence is $D_N(x_n) = O(\log(N)/N)$. A sequence satisfying $D_N(x_n) = O(\log(N)/N)$ is called a **low-discrepancy sequence**.

Example

Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Then the **Kronecker sequence** $(\{n\alpha\})_{n \in \mathbb{N}}$ is uniformly distributed. If α has in addition bounded partial quotients a_i in its continued fraction expansion, then the sequence is a low-discrepancy sequence.

P-adic Numbers

Definition

Let $p\in\mathbb{Z}$ be a prime number. For $a=\frac{b}{c}$ with $b,c\in\mathbb{Z}\setminus\{0\}$ its p-adic absolute value is defined by: let m be the highest possible power with $a=p^m\frac{b'}{c'}$ and (b'c',p)=1. Then

$$|a|_p := p^{-m}.$$

The **p-adic numbers** \mathbb{Q}_p are the completion of \mathbb{Q} with respect to $|\cdot|_p$. The **p-adic integers**

$$\mathbb{Z}_p := \left\{ x \in \mathbb{Q}_p : |x|_p \le 1 \right\}$$

are a subring of \mathbb{Q}_p and they are the closure of \mathbb{Z} in the field \mathbb{Q}_p .

P-adic Uniform distribution (1/3)

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{Z}_p . The sequence is said to be **uniformly distributed** if for all $k\in\mathbb{N}$ and $z\in\mathbb{Z}_p$ it holds that

$$\lim_{N \to \infty} \frac{\#\{x_1, \dots, x_N\} \cap D_p(z, p^{-k})}{N} - p^{-k} = 0,$$

where
$$D_p(z, p^{-k}) = \{x \in \mathbb{Z}_p \mid |x - z|_p \le p^{-k}\}.$$

Definition

The discrepancy of the first $N \in \mathbb{N}$ elements of the sequence $(x_n)_{n \in \mathbb{N}} \subset [0,1]$ is defined as

$$D_N(x_n) = \sup_{z \in \mathbb{Z}_p, k \in \mathbb{N}} \left| \frac{\#\{x_1, \dots, x_N\} \cap D_p(z, p^{-k})}{N} - p^{-k} \right|.$$

P-adic Uniform distribution (1/3)

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{Z}_p . The sequence is said to be **uniformly distributed** if for all $k\in\mathbb{N}$ and $z\in\mathbb{Z}_p$ it holds that

$$\lim_{N \to \infty} \frac{\#\{x_1, \dots, x_N\} \cap D_p(z, p^{-k})}{N} - p^{-k} = 0,$$

where $D_p(z, p^{-k}) = \{x \in \mathbb{Z}_p \mid |x - z|_p \le p^{-k}\}.$

Definition

The **discrepancy** of the first $N \in \mathbb{N}$ elements of the sequence $(x_n)_{n \in \mathbb{N}} \subset [0, 1]$ is defined as

$$D_N(x_n) = \sup_{z \in \mathbb{Z}_p, k \in \mathbb{N}} \left| \frac{\#\{x_1, \dots, x_N\} \cap D_p(z, p^{-k})}{N} - p^{-k} \right|.$$

P-adic Uniform distribution (2/3)

Theorem

A sequence $(x_n)_{n\in\mathbb{N}}\subset\mathbb{Z}_p$ is uniformly distributed if and only if $\lim_{N\to\infty}D_N(x_n)=0$..

Theorem & Definition

The best possible rate of convergence is $D_N(x_n) = O(1/N)$. A sequence satisfying $D_N(x_n) = O(1/N)$ is called a **p-adic low-discrepancy sequence**.

P-adic Uniform distribution (2/3)

Theorem

A sequence $(x_n)_{n\in\mathbb{N}}\subset\mathbb{Z}_p$ is uniformly distributed if and only if $\lim_{N\to\infty}D_N(x_n)=0$..

Theorem & Definition

The best possible rate of convergence is $D_N(x_n) = O(1/N)$. A sequence satisfying $D_N(x_n) = O(1/N)$ is called a **p-adic low-discrepancy sequence**.

Example (Theorem, Cugiani/Beer)

Let $a,b\in\mathbb{Z}_p$. Then $(na+b)_{n\in\mathbb{N}}$ is a low-discrepancy sequence if and only $a\in\mathbb{Z}_p^\times=\{z\in\mathbb{Z}_p\ |\ |z|_p=1\}.$

P-adic Uniform distribution (2/3)

Theorem

A sequence $(x_n)_{n\in\mathbb{N}}\subset\mathbb{Z}_p$ is uniformly distributed if and only if $\lim_{N\to\infty}D_N(x_n)=0$..

Theorem & Definition

The best possible rate of convergence is $D_N(x_n) = O(1/N)$. A sequence satisfying $D_N(x_n) = O(1/N)$ is called a **p-adic low-discrepancy sequence**.

Example (Theorem, Cugiani/Beer)

Let $a,b\in\mathbb{Z}_p$. Then $(na+b)_{n\in\mathbb{N}}$ is a low-discrepancy sequence if and only $a\in\mathbb{Z}_p^\times=\{z\in\mathbb{Z}_p\ |\ |z|_p=1\}.$

P-adic Uniform distribution (3/3)

Theorem (W., 2024+)

Let f be a polynomial. Then $(x_n)=(f(n))$ satisfies $D_N(x_n)=\mathcal{O}\left(\frac{1}{N}\right)$ if and only if f is a permutation polynomial mod p^2 .

Example

Let p be a prime. Then $(x_n)=(n^p+an+b)$ with $a\in\mathbb{Z}_p^x, a+1\in\mathbb{Z}_p^x$ and $b\in\mathbb{Z}_p$ is a low-discrepancy sequence in \mathbb{Z}_p .

P-adic Uniform distribution (3/3)

Theorem (W., 2024+)

Let f be a polynomial. Then $(x_n)=(f(n))$ satisfies $D_N(x_n)=\mathcal{O}\left(\frac{1}{N}\right)$ if and only if f is a permutation polynomial mod p^2 .

Example

Let p be a prime. Then $(x_n)=(n^p+an+b)$ with $a\in\mathbb{Z}_p^x, a+1\in\mathbb{Z}_p^x$ and $b\in\mathbb{Z}_p$ is a low-discrepancy sequence in \mathbb{Z}_p .

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in [0,1]. Then its N-point pair correlation function is defined by

$$F_N(s) := \frac{1}{N} \# \left\{ 1 \le k \ne l \le N : ||x_k - x_l|| \le \frac{s}{N} \right\},$$

where $\|\cdot\|$ is the distance of a number from its nearest integer and $s \ge 0$. The sequence $(x_n)_{n \in \mathbb{N}}$ has **Poissionian pair correlations** if

$$\lim_{N \to \infty} F_N(s) = 2s$$

for all s > 0.

Why do independent, uniformly distributed random sequences have PPC?

Heuristic Argument

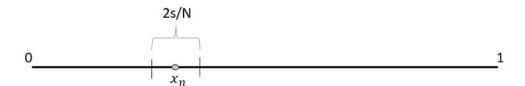
Consider a fixed N, and fix x_n for some $1 \le n \le N$. Then the region around x_n with length 2s/N is expected to contain $2s\frac{N-1}{N}$ of the remaining points.

Why do independent, uniformly distributed random sequences have PPC?

Heuristic Argument

Consider a fixed N, and fix x_n for some $1 \le n \le N$. Then the region around x_n with length 2s/N is expected to contain $2s\frac{N-1}{N}$ of the remaining points. Since n can attain N different values, we expect

$$F_N(s) \approx \frac{1}{N} \cdot N \cdot \frac{2s(N-1)}{N} \to 2s$$

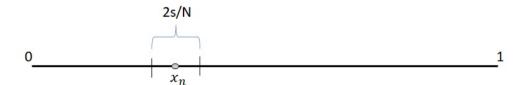


Why do independent, uniformly distributed random sequences have PPC?

Heuristic Argument

Consider a fixed N, and fix x_n for some $1 \le n \le N$. Then the region around x_n with length 2s/N is expected to contain $2s\frac{N-1}{N}$ of the remaining points. Since n can attain N different values, we expect

$$F_N(s) pprox rac{1}{N} \cdot N \cdot rac{2s(N-1)}{N} o 2s.$$



Example

(At least) most known examples of low-discrepancy sequence do **not** have Poissonian pair correlations, e.g. Kronecker sequences and van der Corput sequences.

Examples

The following sequences do have Poissonian pair correlations

• $\{\sqrt{n}\}_{n\in\mathbb{N}}$ without square numbers $n\in\mathbb{N}$ (El-Baz, Marklof, Vinogradov, 2015)

Example

(At least) most known examples of low-discrepancy sequence do **not** have Poissonian pair correlations, e.g. Kronecker sequences and van der Corput sequences.

Examples

The following sequences do have Poissonian pair correlations:

- $\{\sqrt{n}\}_{n\in\mathbb{N}}$ without square numbers $n\in\mathbb{N}$ (El-Baz, Marklof, Vinogradov, 2015)
- $\{\alpha n^{\theta}\}_{n\in\mathbb{N}}$ for $\theta \leq \frac{1}{3}$ and $\alpha > 0$ (Lutsko, Sourmelidis, Technau, 2021)

Example

(At least) most known examples of low-discrepancy sequence do **not** have Poissonian pair correlations, e.g. Kronecker sequences and van der Corput sequences.

Examples

The following sequences do have Poissonian pair correlations:

- $\{\sqrt{n}\}_{n\in\mathbb{N}}$ without square numbers $n\in\mathbb{N}$ (El-Baz, Marklof, Vinogradov, 2015)
- $\{\alpha n^{\theta}\}_{n\in\mathbb{N}}$ for $\theta\leq \frac{1}{3}$ and $\alpha>0$ (Lutsko, Sourmelidis, Technau, 2021)
- $\{\alpha \log(n)^A\}_{n\in\mathbb{N}}$ for $\alpha>0$ and A>1 (Lutsko, Technau, 2022)

Example

(At least) most known examples of low-discrepancy sequence do **not** have Poissonian pair correlations, e.g. Kronecker sequences and van der Corput sequences.

Examples

The following sequences do have Poissonian pair correlations:

- $\{\sqrt{n}\}_{n\in\mathbb{N}}$ without square numbers $n\in\mathbb{N}$ (El-Baz, Marklof, Vinogradov, 2015)
- $\{\alpha n^{\theta}\}_{n\in\mathbb{N}}$ for $\theta\leq \frac{1}{3}$ and $\alpha>0$ (Lutsko, Sourmelidis, Technau, 2021)
- $\{\alpha \log(n)^A\}_{n\in\mathbb{N}}$ for $\alpha>0$ and A>1 (Lutsko, Technau, 2022)

(Real) Weak Poissonian Pair Correlations

Definition

Let $0 < \alpha \le 1$. Then a sequence $(x_n) \subset [0,1]$ has α -weak Poissonian pair correlations if

$$\lim_{N\to\infty}\frac{1}{N^2}\frac{1}{\mu\left(D(0,s/N^\alpha)\right)}\#\left\{1\leq i\neq j\leq N\,:\, \|x_i-x_j\|\leq \frac{s}{N^\alpha}\right\}=1$$

for all s > 0.

Let $(x_n) \subset [0,1]$ be a low-discrepancy sequence, then (x_n) has α -weak for all $0 < \alpha < 1$.

(Real) Weak Poissonian Pair Correlations

Definition

Let $0 < \alpha \le 1$. Then a sequence $(x_n) \subset [0,1]$ has α -weak Poissonian pair correlations if

$$\lim_{N\to\infty}\frac{1}{N^2}\frac{1}{\mu\left(D(0,s/N^\alpha)\right)}\#\left\{1\leq i\neq j\leq N\,:\, \|x_i-x_j\|\leq \frac{s}{N^\alpha}\right\}=1$$

for all s > 0.

Proposition

Let $(x_n) \subset [0,1]$ be a low-discrepancy sequence, then (x_n) has α -weak for all $0 < \alpha < 1$.

(P-adic) Weak Poissonian Pair Correlations (1/4)

Definition

Let $0 < \alpha \le 1$. Then a sequence $(x_n) \subset \mathbb{Z}_p$ has α -weak Poissonian pair correlations if

$$\lim_{N\to\infty}\frac{1}{N^2}\frac{1}{\mu\left(D(0,s/N^\alpha)\right)}\#\left\{1\leq i\neq j\leq N\,:\,\left|x_i-x_j\right|_p\leq \frac{s}{N^\alpha}\right\}=1$$

for all s > 0.

Let $(x_n) \subset \mathbb{Z}_p$ be a low-discrepancy sequence, then (x_n) has α -weak Poissonian pair correlations for all $0 < \alpha < 1$.

(P-adic) Weak Poissonian Pair Correlations (1/4)

Definition

Let $0 < \alpha \le 1$. Then a sequence $(x_n) \subset \mathbb{Z}_p$ has α -weak Poissonian pair correlations if

$$\lim_{N\to\infty}\frac{1}{N^2}\frac{1}{\mu\left(D(0,s/N^\alpha)\right)}\#\left\{1\leq i\neq j\leq N\,:\,\left|x_i-x_j\right|_p\leq \frac{s}{N^\alpha}\right\}=1$$

for all s > 0.

Proposition

Let $(x_n) \subset \mathbb{Z}_p$ be a low-discrepancy sequence, then (x_n) has α -weak Poissonian pair correlations for all $0 < \alpha < 1$.

(P-adic) Weak Poissonian Pair Correlations (2/4)

Proposition (W., 2023)

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of independent random variables, which are uniformly distributed on \mathbb{Z}_p . Then for any $0<\alpha\leq 1$ the sequence almost surely has α -weak Poissonian pair correlations.

Theorem (W., 2024+)

Let $(x_n)=f(n)_{n\in\mathbb{N}}$ with f(n) a permutation polynomial mod p^2 , then the sequence has α -weak Poissonian pair correlations for any $0<\alpha<1$, but does not have Poissonian pair correlations.

(P-adic) Weak Poissonian Pair Correlations (2/4)

Proposition (W., 2023)

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of independent random variables, which are uniformly distributed on \mathbb{Z}_p . Then for any $0<\alpha\leq 1$ the sequence almost surely has α -weak Poissonian pair correlations.

Theorem (W., 2024+)

Let $(x_n)=f(n)_{n\in\mathbb{N}}$ with f(n) a permutation polynomial mod p^2 , then the sequence has α -weak Poissonian pair correlations for any $0<\alpha<1$, but does not have Poissonian pair correlations.

(P-adic) Weak Poissonian Pair Correlations (3/4)

Theorem (W., 2024+)

Let $0 < \alpha \le 1$. If $(y_k)_{k \in \mathbb{N}} = (\varphi^{-1}(x_k))_{k \in \mathbb{N}} \in [0,1)$ has (real) α -Poissonian pair correlations, then (x_k) has (p-adic) α -Poissonian pair correlations.

Definition

The Monna map $\varphi_p:\mathbb{Z}_p \to \mathbb{R}$ is for

$$x = \sum_{i=0}^{\infty} a_i p^i$$

with $0 \le a_i \le p-1$, a p-adic number, defined as

$$\varphi(x) = y = \sum_{i=0}^{\infty} a_i p^{-i-1}.$$

(P-adic) Weak Poissonian Pair Correlations (3/4)

Theorem (W., 2024+)

Let $0 < \alpha \le 1$. If $(y_k)_{k \in \mathbb{N}} = (\varphi^{-1}(x_k))_{k \in \mathbb{N}} \in [0,1)$ has (real) α -Poissonian pair correlations, then (x_k) has (p-adic) α -Poissonian pair correlations.

Definition

The Monna map $\varphi_p: \mathbb{Z}_p \to \mathbb{R}$ is for

$$x = \sum_{i=0}^{\infty} a_i p^i$$

with $0 \le a_i \le p-1$, a p-adic number, defined as

$$\varphi(x) = y = \sum_{i=0}^{\infty} a_i p^{-i-1}.$$

(P-adic) Weak Poissonian Pair Correlations (4/4)

Remark

While φ is obviously surjective, it is not injective on all of its domain due to the limit of the geometric series. Nonetheless, an inverse map φ^{-1} exists on the set

$$\left\{x\in[0,1)\,:\,x=\sum_{i=0}^\infty a_ip^{-i-1},\;a_i\neq p-1\;\text{for infinitely many }i\right\}.$$

Moreover, we know that the inverse image of x under φ contains the element

$$y = \sum_{i=0}^{\infty} a_i p^{i-1}$$

and we may thus define $\varphi^{-1}(x) := y$.

Pair Correlations in the p-adic Setting

Thank you for your attention!